Behavioral Defects in C. elegans egl-36 Mutants Result from Potassium Channels Shifted in Voltage-Dependence of Activation

نویسندگان

  • Duncan B Johnstone
  • Aguan Wei
  • Alice Butler
  • Lawrence Salkoff
  • James H Thomas
چکیده

Mutations in the C. elegans egl-36 gene result in defective excitation of egg-laying and enteric muscles. Dominant gain-of-function alleles inhibit enteric and egg-laying muscle contraction, whereas a putative null mutation has no observed phenotype. egl-36 encodes a Shaw-type (Kv3) voltage-dependent potassium channel subunit. In Xenopus oocytes, wild-type egl-36 expresses noninactivating channels with slow activation kinetics. One gain-of-function mutation causes a single amino acid substitution in S6, and the other causes a substitution in the cytoplasmic amino terminal domain. Both mutant alleles produce channels dramatically shifted in their midpoints of activation toward hyperpolarized voltages. An egl-36::gfp fusion is expressed in egg-laying muscles and in a pair of enteric muscle motor neurons. The mutant egl-36 phenotypes can thus be explained by expression in these cells of potassium channels that are inappropriately opened at hyperpolarized potentials, causing decreased excitability due to increased potassium conductance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EGL-36 Shaw Channels Regulate C. elegans Egg-Laying Muscle Activity

The C. elegans egl-36 gene encodes a Shaw-type potassium channel that regulates egg-laying behavior. Gain of function [egl-36(gf)] and dominant negative [egl-36(dn)] mutations in egl-36 cause reciprocal defects in egg laying. An egl-36::gfp reporter is expressed in the egg-laying muscles and in a few other tissues. Expression of an egl-36(gf) cDNA in the egg-laying muscles causes behavioral def...

متن کامل

Effects of voltage-gated calcium channel subunit genes on calcium influx in cultured C. elegans mechanosensory neurons.

Voltage-gated calcium channels (VGCCs) serve as a critical link between electrical signaling and diverse cellular processes in neurons. We have exploited recent advances in genetically encoded calcium sensors and in culture techniques to investigate how the VGCC alpha1 subunit EGL-19 and alpha2/delta subunit UNC-36 affect the functional properties of C. elegans mechanosensory neurons. Using the...

متن کامل

CCA-1, EGL-19 and EXP-2 currents shape action potentials in the Caenorhabditis elegans pharynx.

The pharynx of Caenorhabditis elegans is a tubular muscle controlled by its own set of neurons. We developed a technique to voltage clamp the pharyngeal muscle and demonstrate by analyzing mutants that the pharyngeal action potential is regulated by three major voltage-gated currents, conducted by a T-type calcium channel CCA-1, an L-type calcium channel EGL-19 and a potassium channel EXP-2. We...

متن کامل

Macoilin, a Conserved Nervous System–Specific ER Membrane Protein That Regulates Neuronal Excitability

Genome sequence comparisons have highlighted many novel gene families that are conserved across animal phyla but whose biological function is unknown. Here, we functionally characterize a member of one such family, the macoilins. Macoilins are characterized by several highly conserved predicted transmembrane domains towards the N-terminus and by coiled-coil regions C-terminally. They are found ...

متن کامل

Hyperactivation of L-type voltage-gated Ca2+ channels in Caenorhabditis elegans striated muscle can result from point mutations in the IS6 or the IIIS4 segment of the α1 subunit.

Several human diseases, including hypokalemic periodic paralysis and Timothy syndrome, are caused by mutations in voltage-gated calcium channels. The effects of these mutations are not always well understood, partially because of difficulties in expressing these channels in heterologous systems. The use of Caenorhabditis elegans could be an alternative approach to determine the effects of mutat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1997